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A method for numerically simulating the hydroelastic behaviour of a passive 
compliant wall of finite dimensions is presented. Using unsteady potential flow, the 
perturbation pressures which arise from wall disturbances of arbitrary form are 
calculated through a specially developed boundary-element method. These pressures 
may then be coupled to a suitable solution procedure for the wall mechanics to 
produce an interactive model for the wall/flow system. The method is used to study 
the two-dimensional disturbances which may occur on a Kramer-type compliant 
wall of finite length. Finite-difference methods are used to yield wall solutions driven 
by the fluid pressure after some perturbation from the equilibrium position. Thus, 
histories of surface deflection and wall energy are obtained. Such a modelling of the 
physics of the system requires no presupposition of disturbance form. 

A thorough investigation of divergence instability is carried out. Most of the 
results presented in this paper concern the response of the compliant wall while (and 
after) a point pressure pulse, carried in the applied flow, travels over the compliant 
panel. Above a critical flow speed and once sufficient time has passed, the compliant 
wall is shown to adopt the particular profile of an unstable mode. After this 
divergence mode has been established, instability is realized as a slowly travelling 
downstream wave. These features are in agreement with the findings of experimental 
studies. The role of wall damping is clarified: damping serves only to reduce the 
growth rate of the instability, leaving its onset flow speed unchanged. The present 
predictions provide an improvement upon some of the unrealistic aspects of 
predictions yielded by travelling-wave and standing-wave treatments of divergence 
instability. 

The response of a long compliant panel after a single-point pressure-pulse 
initiation, applied at its midpoint, is simulated. At flow speeds higher than a critical 
value, parts of the formerly (at subcritical flow speeds) upstream-travelling wave 
system change to travel downstream and show amplitude growth. The development 
of this ' upstream-incoming ' wave illustrates how divergence instability can occur at  
locations upstream of the point of initial excitation. Faster flexural waves transmit 
energy upstream, thereafter these disturbances can evolve into slow downstream- 
travelling divergence waves. The spread of the instability to locations both 
downstream and upstream of the point of initial excitation indicates that divergence 
is an absolute instability. This behaviour and the effects of wall damping clarified by 
the present work strongly suggest that divergence is a Class C instability. 

1. Introduction 
There is now ample evidence, both experimental and theoretical, that significant 

postponement of laminar-turbulent transition can be achieved for boundary-layer 
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flow in water by using compliant walls. Much of this evidence is rather recent and is 
reviewed by Riley, Gad-el-Hak & Metcalfe (1988), Gad-el-Hak (19863) and Carpenter 
(1990). In view of this evidence it is, perhaps, timely to progress from asking whether 
or not wall compliance can delay transition to seeking to maximize the delay. What, 
then, are the factors that limit the transition-delaying performance of compliant 
walls ? 

Hitherto there has been an understandable tendency to focus most of the attention 
on the effect of wall compliance on the Tollmien-Schlichting waves. However, the 
answer to the question posed above will not be found in this way. It is a fairly well- 
established fact, for example see figure 11 of Carpenter & Garrad (1985), that the 
Tollmien-Schlichting instability (TSI) could be completely stabilized if the wall were 
made sufficiently compliant. What prevents this stratagem from being successful in 
practice is the appearance of other types of instability - mainly hydroelastic (or wall- 
based) in nature. This point is very well illustrated by the empirical data obtained 
during the series of experimental tests carried out by Gaster (1987) and Daniel, 
Gaster & Willis (1987). The original experiments by Kramer (1960) on compliant 
coatings showed that substantial drag reductions, possibly attributable to transition 
delay, could be achieved. But the Gaster experiments firmly established for the first 
time that wall compliance could delay transition. Moreover, good agreement was 
found between the measured instability growth over the compliant walls and the 
theoretical predictions of Willis (1986). However, the transition process was quite 
different in the boundary layers over the compliant panels as compared to the rigid 
control. For instance, it appeared to be very much more sudden and violent. 
Precisely what happened in the transition process over the compliant walls remains 
unclear, but it is fairly certain that one of the other instability modes was involved. 
This point is discussed by Carpenter (1990) and Lucey, Carpenter & Dixon (1991). 

Given that the interaction of two wave-bearing media, the fluid flow and the solid 
compliant wall, is involved, it is not surprising that many types of instability should 
be possible. This was well appreciated by Benjamin (1960, 1963) and Landahl(l962) 
who carried out the early theoretical studies on the stability of boundary layers over 
compliant walls. In order to make further progress towards the practical application 
of wall compliance for transition postponement, it is essential, as implied above, that 
these other types of instability be well understood. Two main types of hydroelastic, 
or flow-induced surface instability, have been observed for flows over compliant 
walls. These are travelling-wave $flutter (TWF), which takes the form of a travelling 
wave with a phase speed close to the free-stream speed, and divergence, which either 
travels very slowly or is static. Travelling-wave flutter is amenable to the sort of 
theoretical treatment used for the TSI. In fact, a general asymptotic theory for this 
instability has recently been developed by Carpenter & Gajjar (1990). The present 
paper, on the other hand, is mainly devoted to a study of divergence, which requires 
a substantially different approach. 

The mechanisms of destabilization for the TSI and TWF are rather subtle and 
both involve irreversible energy transfer which is made possible by phase shifts 
across the critical layer. In this respect divergence is much simpler. It occurs when 
a disturbance gives rise to hydrodynamic (pressure) forces which exceed the 
restorative forces in the compliant wall. This process primarily involves reversible 
energy transfer and, accordingly, one might expect any irreversible energy-transfer 
mechanisms, such as wall damping, to have a secondary effect. Despite this apparent 
simplicity, however, certain theoretical difficulties remain. The two main unresolved 
issues concern the role of wall damping - is it essential for the divergence instability ? 
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- and the form taken by the instability - is i t  a travelling wave or a purely static 
instability ? The conflicting evidence is briefly reviewed below. 

The instability mechanism for divergence involves essentially conservative forces. 
Accordingly, to a reasonable approximation the wall may be regarded as being 
driven by hydrodynamic forces generated by an unsteady, purely potential, flow. 
Thus, a pessimistic, but probably fairly accurate, estimate of the onset speed for 
divergence may be found by using potential-flow theory to calculate the driving force 
and then solving the equation of motion for the wall. For an infinitely long surface 
a travelling-wave form may be assumed for the wall displacement, thereby reducing 
the problem to a dispersion equation for the complex phase speed. Such solutions, see 
for example Landahl (1962), Dugundji, Dowel1 & Perkin (1963), Duncan, Waxman 
& Tulin (1985) and Carpenter & Garrad (1986), predict that divergence appears in the 
form of a slow downstream-travelling wave, but only when wall damping is present. 
At higher flow speeds, divergence gives way to a more violent modal-coalescence 
flutter. In the absence of wall damping only the latter instability occurs. The fact 
that damping appears to be required for divergence has led many authors to suggest 
that, following the Landahl(1962)-Benjamin (1963) classification scheme, it is a Class 
At  instability like the TSI. However, Carpenter & Garrad (1986) have shown that 
the divergence instability has zero group velocity. This implies that it is an absolute 
instability, rather than a convective instability like TWF and the TSI. Accordingly, 
one would expect divergence to be Class C, implying that damping would have little 
influence on its onset. 

The theoretical work based on potential flow has been briefly reviewed above. 
Some authors, however, have been able to incorporate viscous boundary-layer effects 
into their theoretical modelling of the divergence instability. Duncan et al. (1985), for 
example, introduced a semi-empirical correction to the wall pressure, ppot, 
corresponding to potential flow, to approximate the actual wall pressure as 

K ,  eiep ppot . 
For modelling divergence with a laminar boundary layer they obtained values of 
K ,  x 0.07 and a phase shift of 0, x -30" from the numerical simulations of 
Balasubramanian & Orszag (1983) for a boundary layer over a fixed wavy wall. The 
negative phase shift suggests that viscous effects exert a strong stpbilizing effect. 
This is broadly in agreement with the more recent work of Evrensel & Kalnins (1988) 
who have been able to incorporate the viscous effects of the boundary layer in their 
numerical study. For compliant walls comprising a single homogeneous layer they 
found that the divergence mode is always stable for elastic or slightly viscoelastic 
walls, whereas for higher viscoelastic damping divergence was found in the form of 
growing waves travelling slowly downstream. The most complete investigation was 
carried out by Sen & Arora (1988). Their 'inverse' approach has the advantage of 
including all the possible modes of response. Divergence could be identified with their 
Kelvin-Helmholtz mode. For spring- backed tensioned-membrane walls they found 
that, except for very long waves at very low Reynolds number (based on boundary- 
layer thickness), the divergence instability only occurred for high wall damping. 

Let us now consider the experimental studies of divergence. Of all the instabilities 
that might occur in the wall/flow system, divergence is the one that has been most 
consistently observed in experiments. Puryear (1962), Dugundji et al. (1963), 

t Class A(B) waves are destabilized (stabilized) by wall damping and other similar irreversible 
energy-transfer processes. Class C waves are largely unaffected by irreversible energy exchange. 

5 FLM 234 
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McMichael, Klebanoff & Mease (1979), Hansen & Hunsten (1974, 1983) and Gad-el- 
Hak, Blackwelder & Riley (1984) have all recorded divergence as an essentially two- 
dimensional instability. The measurement of drag in the rotating-disc experiments of 
Hansen & Hunsten (1974) emphasized the importance of ‘designing-out ’ divergence, 
there being a marked increase in drag due to the roughness-like effect of the 
instability’s spanwise ridges. The most comprehensive measurements of divergence 
have been made by Gad-el-Hak et al. for a turbulent boundary-layer flow over a 
homogeneous viscoelastic wall. At a clearly defined flow speed, divergence waves 
appear, travelling with phase speeds of approximately 5 % of the surface shear-wave 
speed. Essentially two-dimensional in character, they come to occupy all streamwise 
locations of the surface, suggesting an absolute instability. A similar experiment was 
performed by Gad-el-Hak ( 1 9 8 6 ~ )  but using an almost elastic wall; in this case 
divergence does not occur. Instead, the surface is destabilized by faster moving (50 YO 
of shear-wave speed) waves which may be identified with Class B TWF. The 
differences between the modes of destabilization of the two types of wall led Gad-el- 
Hak to surmise that surface-energy dissipation is a prerequisite for the occurrence of 
divergence. 

A common pattern seems to emerge from the theoretical studies reviewed above. 
It would appear that substantial wall damping is required in order for the divergence 
instability to exist. This view is also in complete accordance with the experimental 
studies of Gad-el-Hak et al. However, this view has been questioned by Carpenter & 
Garrad (1986) who pointed out that, for the type of wall in question, which comprises 
a single viscoelastic layer, in the absence of damping the onset flow speed for TWF 
is lower than that for divergence. The onset speed for TWF rises quite markedly as 
the wall damping is increased. Accordingly, they argued that, since divergence 
appears to be an absolute instability, wall damping could not play an essential role 
in the destabilization process but, rather, removed the possibility of the TWF so that 
the experimenter only saw divergence. 

However plausible this alternative explanation of the experimental observations 
might be in isolation, it still remains to explain why numerical studies, such as those 
by Evrensel & Kalnins (1988) and Sen & Arora (1988), which incorporate the full 
viscous boundary-layer effects, also indicate that substantial wall damping is 
required for divergence to appear. The explanation may be found in their assumption 
of an infinitely long surface. This is a perfectly good assumption for convective 
instabilities which are destabilized by irreversible energy transfer. But for an 
absolute instability, like divergence, involving essentially conservative forces the 
leading and trailing edges of the compliant panel may play a subtle but vital role in 
the destabilization process. This point certainly emerges from the work presented 
below, but it is studied analytically in more detail in Lucey (1989). The essential 
point can be understood by making reference to potential flow over an infinite 
compliant wall (for example, see Carpenter & Garrad 1986). In this case in the 
absence of damping a state of neutral stability exists for a range of flow speeds above 
the divergence-onset speed. The fact that the wave travels slowly downstream keeps 
the destabilizing hydrodynamic forces in equilibrium with the restorative forces in 
the wall. The inclusion of wall damping, however light, breaks this equilibrium and 
allows the divergence wave to grow. For a wall of finite length the effect of the 
leading and trailing edges, however distant, also breaks this equilibrium thereby 
allowing divergence to grow even in the absence of damping. For this reason any 
theoretical or numerical model of divergence, which is based on the assumption of an 
infinitely long surface, omits a vital ingredient in the destabilization process and is 
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liable to lead to misleading conclusions, particularly with regard to the effects of wall 
damping. 

There are a number of studies of hydroelastic instability for potential flow over 
finite panels. For example, see Weaver & Unny (1971), Ellen (1973) and Garrad & 
Carpenter (1982). In all these studies divergence occurs in the absence of damping. 
In fact, Garrad & Carpenter were able to predict both the onset speed and critical 
wavelength for divergence on walls of the type used by Kramer (1960). Moreover, 
their predictions were in good agreement with the experimental observations of 
Puryear (1962). However, all the studies referred to above are based on the arbitrary 
assumption that the instability takes the form of standing waves. Attempts have 
been made to reconcile the differences between the travelling-wave (infinite surface) 
and the standing-wave (finite surface) approaches. For example, Carpenter & Garrad 
(1986) have conducted an asymptotic investigation of a finite surface in the limit of 
infinite wavenumber. They demonstrated that both methods give the same onset 
speed. Nevertheless, the differences between the two approaches with regard to 
damping and the predicted forms of the instability remain unresolved. What is 
required is a method of modelling divergence on a compliant wall of finite length 
which makes no assumption about the initial or subsequent forms of the disturbance. 

The method used in the present paper meets the above requirement. It uses a novel 
treatment of the hydrodynamics based on a boundary-integral formulation. t This 
allows numerical simulations of a wide variety of initial-value problems to be 
undertaken. In this respect our work is more like an experimental investigation than 
a theoretical study. At  present the hydrodynamics is restricted to potential flow, 
although the method of Duncan et al. (1985), referred to above, may be used to take 
the boundary-layer effects into account in an approximate fashion. Plainly, it would 
be highly desirable to incorporate the full viscous effects. This would, however, be an 
extremely challenging computational problem. Domaradzki & Metcalfe (1987) and 
Metcalfe et al. (1991) have carried out direct numerical simulations of the linear and 
nonlinear development of disturbances in boundary layers over compliant walls. The 
viscous effects are fully incorporated but these are temporal calculations for an 
infinite surface based on the assumption of periodic inflow and outflow. Thus, a truly 
spatial calculation for aJinite compliant surface may well be beyond the state of the 
art. Our method may, however, be readily extended to three-dimensional finite 
panels. 

2. Computational model 

equation of motion written in the form 
The mechanics of the disturbed wall/flow system may be represented by an 

Lw = -6p(W, w, w) (2.1) 

subject to initial values and surface-edge conditions. L is a differential operator on 
the vertical surface displacement, w, and Sp is the pressure perturbation due to the 
disturbances to the free-stream flow, U,. Coordinate axes are as shown in figure 1. 
For Kramer-type walls, a fluid substrate may be present ; this feature is not included 
in the present work. It is known, see Garrad & Carpenter (1982), that an inviscid 
substrate contributes an additional inertial term to the system, whilst Carpenter & 
Garrad (1985) have shown that a viscous substrate generates a term which operates 

t A somewhat similar method has been independently developed by D’Sa & Dalton (1990). 
5-2 
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= M + 1  - 
FIQURE 1. A schematic illustration of the compliant wall showing the discretization of the 

surface into boundary elements. 

in a similar fashion to structural damping. For the anticipated low phase speeds 
associated with divergence waves, the magnitude of this added inertia allows it to be 
neglected in the interests of simplicity. 

2.1. Wall mechanics 
I n  the case of the plate-spring representation of a Kramer-type surface, then 

where p,, h and B are respectively the density, thickness and flexural rigidity of the 
plate. KE is the equivalent spring stiffness, consisting of the spring stiffness and the 
body-force coeficients, whilst d is the coefficient of structural damping of the wall. 
The flexural rigidity is related to the elastic modulus, E,  and the Poisson ratio, v, as 
follows : 

Eh3 
B =  

12( 1 - v 2 ) .  

The flexible surface is discretized into a set of boundary elements or panels, rn = 
1,2 ,  ..., M .  Interior mass points, i = 1 ,2 ,  ..., ( M -  l ) ,  a t  which the mechanical 
properties of the wall will be assumed centred, are defined by the panel end-points. 
The discretized form of (2.1), having used (2.2), a t  time level t is 

p m  hwf + dwf - [B a4/i3x4 + K E ]  w: = - Sp:, 
where 

(2.3) 

Throughout this work hinged-edge conditions will be used. Thus, zero deflection 
and zero turning moment at the leading and trailing edges are imposed ; when using 
centred differences, the following constraints apply : 

w - ~  = -wl and wMfl = - w ~ - ~ .  

However, i t  would be simple to apply other conditions, such as ‘ built-in ’ edges which 
specify zero surface slope a t  the leading and trailing edges. It is noted that both the 
finite-difference form of the flexural stiffness and the edge boundary conditions 
require that ‘dummy’ mass points, additional to the interior mass points, are 
required. Thus we have that i = - l , O ,  1 ,2 ,  ..., (M+ l ) ,  although the solution 
procedure will only need to consider the interior points. 
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2.2. Fluid mechanics 

In order to compute the unsteady hydrodynamic pressures due to arbitrary surface 
disturbances, a boundary-integral method of flow solution is employed. This method 
is well-known in the aerospace industry and is documented in the seminal article of 
Hess & Smith (1966). Its mathematical formalism is recorded in Hunt (1978). 
Nevertheless, some details of how this method was adapted for the current problem 
are noted below. 

Disturbances to the free-stream flow are characterized by the velocity-per- 
turbation potential, @(x, z ,  t )  ; this function can be found by spreading a singularity 
distribution over the wall/flow boundary and then applying the condition of zero 
flux across the (moving) wall/flow interface. Thus : 

(2.5) 

where n is an outward-pointing normal vector and us is the speed of the moving 
surface in the normal direction. In this work, the singularities chosen as solutions to 
Laplace's equation are source( -sink) lines. The perturbation potential is therefore 

V@.n+ U,.n = US 3 

2x u(r,) In 1r-r.J ds, 

where r is the location of any point in the semi-infinite space above the wall and rs 
is the locus vector of the wall which maps out the walllfluid interface, 1. The source- 
strength function is denoted u(rs). Substitution of (2.6) into the boundary condition, 
(2.5), leads to the following equation which defines the source strength distribution : 

u(rs ) ln~r- rs~ds  +U, .n  = us, I +u(r) +-- 
r,+r 

where the singularity a t  r = rs, seen in (2.6), has been properly treated. The surface 
is now modelled as a collection of panels (i.e. line segments) as shown in figure 1 ; if 
the source strength, u, is assumed constant over each panel, then (2.7) becomes 

for i = 1,2, . . . , M .  It is now noted that this form represents a set ofM linear equations 
for the unknowns, at. The system may be solved and the appropriately discretized 
form of (2.6) used to determine the perturbation potential on the surface. 
Subsequently, through the use of the unsteady Bernoulli equation, the pressure on 
the surface may be found. 

The terms in braces in (2.8) are recognized as being influence coefficients and are 
seen to be dependent solely upon the interface geometry. In the unsteady problem 
this geometry evidently changes ; thus, a t  every time step of the evolving disturbance 
the influence coefficients would have to be recalculated and a possibly large matrix 
would have to be inverted in the solution of the linear system, (2.8). Both of these 
requirements would be computationally expensive. This, together with the fact that 
the representation of surface mechanics is confined to the linear regime, suggests that 
a more economical variant of the boundary-element technique be used. A linear 
version has been developed. This requires that : (i) the sources/sinks for each panel 
will be presumed to lie in the plane z = 0 and not on the displaced surface, (ii) the 
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source strength of a particular panel will be determined solely by that panel’s 
streamwise orientation and its normal velocity ; and (iii) second-order terms in 
angles, displacements and flow-speed perturbations will be neglected. 

The consequences of these assumptions are that the geometry-dependent influence 
coefficients remain unchanged throughout the motion, needing only to be calculated 
once, and the system of equations which determine the panel source/sink strengths 
decouple, thereby reducing to the set of equalities: 

CTi = 2(U,ai+UsI), 

where a, is the panel’s angle to  the horizontal and Us, is its vertical speed. 
I n  order to assess the limitations of the linear method, both the nonlinear and 

linear boundary-integral methods have been coded and tested against each other. A 
fundamental sinusoidal deflection is imposed upon the surface, the ratio of amplitude 
to half-wavelength (equivalent to a thickness ratio) of which can be varied. When 
this ratio is 0.1 then the hydrodynamic-stiffness distribution calculated by each of 
the two methods is almost identical; for a ratio of 0.25, the linear method 
overestimates the hydrodynamic stiffness by approximately 10 %. Thus, for the 
small deflections associated with the linear regime of divergence instability, and 
consistent with the linear model adopted for the wall mechanics, the use of the linear 
method is regarded as acceptable. 

For (idealized) modal deflections, semi-analytical methods (e.g. Ellen 1973 ; 
Garrad & Carpenter 1982) are available for the calculation of the generalized 
hydrodynamic stiffnesses that result from the Galerkin approach (see Dowel1 1975) 
to the hydroelastic analysis of finite surfaces. Equivalent generalized forces may be 
calculated using the present flow solution by carrying out a numerical integration 
over the number of panels present in the discretization. These may be compared with 
the equivalent semi-analytical results to determine the resolution (of the surface into 
a collection of panels) required to meet an acceptable level of accuracy. Testing of the 
numerical model for the compliant panel in vacuo, using sinusoidal disturbances has 
shown that a resolution of six panels per half-wavelength yields standing waves with 
a frequency of oscillation accurate to 2 YO. In  contrast, the linear boundary-element 
method requires in excess of twenty panels to reproduce such accuracy in the square 
root of hydrodynamic stiffness. Thus, a first-order boundary-element method, using 
linearly varying source strengths over each panel, has been developed to enhance the 
flow solution. This is a standard technique, see Hess (1973), and, in the present 
context, for a discretization of six panels per half-wavelength, gives the square root 
of the hydrodynamic stiffness within 3% of that found using semi-analytical 
methods. This order of accuracy is now commensurate with that given by the finite- 
difference scheme for the wall mechanics and thus further improvements to the flow 
solution have not been sought. 

A suitable form of the unsteady hydrodynamics is now developed. The discretized 
form of the linearized unsteady Bernoulli equation is 

a@. 
8ps = -pu, us -p  2. 

at 
(2.10) 

Velocity perturbations and perturbation potentials on the surface are given by 

M M 

ui = c (CTmI;m+AmI~),  @i = c CTmIfm, ( 2 . 1 1 ~ ~  b )  
m-1 m-1 
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where If,, I k  and Ifm are sets of time-independent influence coefficients and urn is the 
source strength at the panel centre (control point) with A, being the coefficient of the 
linear variation over the panel m .  Panel angles and normal velocities are given by 

(2.12a, b )  

Using the source strength definitions given by (2 .9) ,  then (2.10), (2.11) and (2.12) may 
be combined to give that 

8pJw,W,w) = 8pf'(~)+8pB~(w)+SpY~(w)+6p~~(w), (2.13) 

where ( 2 . 1 4 ~ )  

(2.14b) 

( 2 . 1 4 ~ )  

(2.14d)  

The form of (2.13) clearly illustrates the physical significance of the decomposed 
unsteady pressure. The f i s t  term is the hydrodynamic stiffness which will determine 
the actual onset flow speed of divergence instability. The following two are normally 
termed the hydrodynamic damping, being conservative forces which modify the 
phase speed of surface waves. The fourth term is the hydrodynamic inertia which 
modifies the speed of the vertical oscillatory motion of the compliant wall. 

The discretization implied in the above requires that all the surface panels are of 
identical length (hence 8x has been written instead of 8x0. For most other 
applications, discretizations are chosen so that a finer resolution exists in regions of 
high curvature thus enabling accurate calculation of the hydrodynamic stiffness. In 
the present work such preconditioning is undesirable since wall deflections of 
arbitrary shape are to be accommodated. Accordingly, it is appropriate that a 
uniform grid be applied, although the resolution of arbitrary disturbances in the 
discretization scheme must be considered in estimating the accuracy of repre- 
sentation of such disturbances when they arise. 

2.3. Computational model for the interactive system 
The hydrodynamic pressures, given by (2.13), are evaluations at the control points 
of the surface panels. Simple averaging between adjacent panels is used to determine 
the value at the mass points utilized in the finite-difference scheme for the wall. The 
coupled wall/flow system is assembled by introducing these pressures into the right- 
hand side of the equation of motion for the wall, (2.3). Some manipulation of the 
defining equation is then required owing to dominance of the hydrodynamic inertia 
over the structural inertia. Thereafter, a semi-implicit method of solution, using 
Gauss-Seidel sweeps over the internal mass points, is used to yield converged values 
of acceleration, velocity and displacement for every mass point and at  each time step 
in the evolution of the disturbed system. A detailed description and discussion of the 
numerical technique can be found in Lucey (1989). 
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3. Results and discussion 
The computational model is now used to conduct a series of ‘numerical 

experiments ’. In  order to investigate the behaviour the wall/flow system, some form 
of initial excitation is required. A wide variety of initial-value problems can be 
studied using the present model - see Lucey (1989). Here, we have chosen to 
concentrate upon the compliant-wall response to a point pressure pulse which may 
be travelling in the flow, 53.1, or take the form of an isolated ‘ hammer blow ’ a t  some 
point on the surface, $3.3. In  $3.2 attention is given to the effects of damping on 
divergence instability. Perhaps the chief difficulty in using the present numerical 
simulation is identifying true hydroelastic instabilities as distinct from the flexural 
response of the wall to the above-mentioned forms of excitation. After the input of 
energy by the activating pressure pulse, visual evidence of disturbance growth at 
some location on the compliant wall may be deceptive since this could result from a 
localized concentration of the wall energy rather than arising from a transmission of 
fluid energy into the wall. We have therefore introduced a procedure which calculates 
the total wall strain energy, E,  kinetic energy, E, and total energy, E, ( = E,  + EK), 
as the wall response evolves. An additional useful quantity is the virtual work done 
by the hydrodynamic stiffness in the establishment of the disturbance a t  a particular 
time, W,. These energies are evaluated using the following expressions : 

M-1 

i-1 

Using these quantities, a true hydroelastic instability is identified by a sustained 
growth in the E, and it first occurs when W, > E,. The second condition simply states 
that the (summed) destabilizing fluid forces must exceed the restorative structural 
forces within the wall for a hydroelastic instability to exist in the conservative 
system. 

Throughout $53.1 and 3.2, the material properties of the wall are those associated 
with the compliant coatings used in the experiments of Kramer (1960). These 
coatings have been the subject of discussion and analysis by Carpenter 8z Garrad 
(1985, 1986) and values of material properties extracted which are relevant to the 
plate-spring model. Thus, elastic modulus E = 0.4 x lo6 N/m2 and equivalent spring 
stiffness K ,  = 230E N/m3, the values for Kramer’s softest coating, are chosen 
together with a plate thickness and density of 2 mm and 952 kg/m3 ; the fluid density 
is taken to be 1000 kg/m3. The methods of Garrad & Carpenter (1982) show that 
these will yield a critical (with regard to divergence) sinusoidal mode, A ,  sin (nmla),  
with wavelength 0.01 15 m. For computational convenience, a surface discretized into 
60 panels is used in @3.1 and 3.2. In order to give a resolution of six panels per half 
wavelength for the anticipated critical mode, a surface length, a ,  capable of 
accurately supporting five wavelengths (n  = 10) of disturbance gives that a % 

0.06 m. This length may seem absurdly short by comparison with Kramer’s original 
0.94 m compliant surface. However, Garrad & Carpenter (1982) have also shown that 
for the higher-order modes with n > 7 ,  the surface behaves very much like a surface 
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of infinite length in the generation of hydrodynamic forces. That is, the influence of 
leading and trailing edges is sufficiently reduced for it no longer to be regarded as the 
classic problem of panel instability. Of course, the present model could be used to 
give an exact simulation of Kramer’s wall by using a discretization of approximately 
1000 panels ; however, little quantitative and qualitative gain would be conferred a t  
the expense of a vastly increased computing time. When the surface motion is 
initiated by a deflection perturbation, then the initial (maximum) amplitude is 
chosen to be one hundredth of the half-wavelength of the anticipated most dangerous 
mode, with n = 10, so ensuring that the linear assumptions in both the fluid and 
structural mechanics are not violated. 

3.1. Travelling pressure-pulse initiation of wall motion 
A point pressure pulse is allowed to travel across the finite compliant wall in the 
(mean) free-stream flow. The pulse originates as a perturbation, AU, to the free- 
stream flow speed. This is incorporated by modifying the boundary-element method 
which is able to accommodate a spatially dependent onset flow speed. The 
undisturbed (by surface perturbations) flow field now becomes U’, where 

(3.4) 

and 6 is the Dirac delta function. A point pressure pulse is used rather than one with 
some built-in shape characteristic because any predisposition of the wall to a 
particular disturbance form is undesirable. It is hoped that the deflection profile will 
evolve solely from the physics of the system. 

Figure 2 ( a )  chronicles the wall response for the period during which the pulse is 
exciting the wall. The resulting deformations are seen to be flexural and the apparent 
periodicity is determined by the position of the pulse as it moves across the surface. 
Some time after the pulse has departed the trailing edge, the wall adopts the profiles 
seen in figure 2 ( b ) ;  disturbance growth is evident and the instability form is of a 
downstream- travelling wave which may be identified as divergence. Perhaps of 
greatest interest is that the system has ‘found’ a critical mode, this being the one for 
which n = 10 in a sinusoidal approximation of the wall deflection. The energy record 
for times covering those of figure 2 (a )  through to those of figure 2 ( b )  is presented in 
figure 2 (c). It is noted that the W, exceeds the Es in a sustained manner after 0.008 s 
have elapsed. Thus, divergence instability only occurs after a suitable surface 
deflection has been established. Further illustration of the instability form is given in 
figure 2 (d ) which was obtained at a flow speed of 20 m/s. These defections pertain to 
times after the pressure pulse has left the compliant wall. Away from the leading and 
trailing edges, the profile of the divergence mode is seen to be closely sinusoidal, the 
absence of flexural harmonics indicating the potency of the instability at  this flow 
speed. The general form taken by divergence instability (seen in figures 2a and 2d ), 
as a slowly travelling downstream wave, is in agreement with the experimental 
findings of Gad-el-Hak et al. (1984) who investigated the interaction between a finite 
compliant panel and an applied flow. The travelling-wave form of divergence is also 
demonstrated in the rotating-disc experiments of Hansen & Hunsten (1974, 1983). 
Gad-el-Hak et al. made careful measurements of the divergence wave, describing the 
wave profile as having sharp peaks with wide separating valleys and having an 
amplitude comparable to the thickness of the compliant coating. Such a profile is not 
obtained in the present work because we are using a different wall model - a spring- 
backed flexible plate rather than a viscoelastic slab - and our predictions are 
restricted to the linear regime of the development of divergence instability. The large 

U ( Z )  = U,-&(Z-  U ,  t )  AU, 
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FIQURE 2 (a ,  b ) .  For caption see facing page. 

amplitudes of the divergence wave, recorded in the experiments of Gad-el-Hak et al. 
strongly suggest that structural nonlinearities had come into play so halting further 
growth of the wave. 

Three important points arise from the above results regarding divergence 
instability: (i) it is found in the absence of wall damping; (ii) it  takes the form of a 
slow downstream-travelling wave ; (iii) instability only occurs after the wall has 
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FIQURE 2. Wall response during and after a travelling pressure-pulse excitation. Wall data : 
E = 0.4 x 10s N/me, K ,  = 230 E N/m3, a = 0.06 m, h = 0.002 m, pm = 952 kg/m3 and d = 0. The 
fluid density is 1000 kg/m3. The variation of vertical wall deflection with wall-station number when 

t = 0.003s; t = 0.004 s; (b) at later times (the pressure pulse left. the compliant wall at 
t = 0.0035 s.), surface position a t :  -, t = 0.010 s;  --, t = 0.01 1 s ;  -.-, t = 0.012 s. (c) The variation 
of wall-energy with time: -, E,; --, E,; -.-, E,; ---, W,. ( d )  The variation of vertical wall 
deflection with wall-station number when U, = 20 m/s, (the pressure pulse left the compliant wall 
at t = 0.0030 s.), surface position at: -, t = 0.0050 s; --, t = 0.0051 s; -.-, t = 0.0052 s .  

Urn = 17.5 m/s: (a) at early times, surface position at: -, t = 0.001 s; -- , t = 0.002 s ; -.-, 
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taken up the profile of a particular (or critical) mode. Regarding the onset flow speed 
of divergence, the present method shows good agreement with the analytical 
predictions of both standing-wave methods (e.g. Weaver & Unny 1971 ; Ellen 1973; 
Garrad & Carpenter 1982) and travelling-wave methods (see Landahl 1962 ; Dugundji 
et al. 1963; Carpenter & Garrad 1986) when the critical mode is used as the basis for 
the spatially dependent part of the wall deformation. However, important differences 
between the present predictions and those of each of the analytical methods exist. 

Standing-wave methods predict a truly static instability even at flow speeds higher 
than that of onset. In  the present work, divergence is only found to be a static 
phenomenon exactly at the onset flow speed. A detailed comparison of the two 
methods has been carried out by Lucey (1989). At sub-critical flow speeds, both 
methods predict that for a fully developed disturbance (i.e. one occupying all 
locations of the compliant panel) the wall response is dominated by upstream- 
travelling waves. In  this regime it is found that W, < E,. These waves would 
therefore be quickly attenuated by wall damping and may be regarded as Class B 
flexural waves. Exactly a t  the critical flow speed, both methods find that W, = E,  a t  
all times and thus static equilibrium exists. However, in the divergence regime of 
flow speeds the predictions are different. The standing-wave wave solution shows 
W, = E,  a t  t = 0, the two quantities then increasing as time passes, with Wv slightly in 
excess of E,. Furthermore, the profile of the unstable mode is dependent upon the 
flow speed used. This suggests that the standing-wave method finds the particular 
static deflection with the highest E, that may be destabilized a t  that flow speed. I n  
fact, there may be could be numerous alternative deflection profiles with lower values 
of E,  that would also be unstable. In contrast, the present numerical method always 
shows energy records, within this same regime, with W, > E,  a t  t = 0. (Wv = E, only 
a t  the lowest flow speed for which divergence can occur.) The excess of hydrodynamic 
energy being transferred to the wall (over and above that which would cause the wall 
deflection to grow in a static configuration) forces the disturbance to travel 
downstream with a particular phase speed so that the energy-transfer excess is cut 
back to such a level that a sustained instability growth continues to occur. The 
present, more realistic, travelling-wave form, therefore, evinces lower growth rates 
than the equivalent static instability predicted by standing-wave methods. 

In view of the above paragraph, it might seem that when making analytical 
predictions, the travelling-wave formulation is more appropriate. However, this 
approach can be misleading with regard to the effect of wall damping; this is 
discussed in the following subsection. Lastly, the surface behaviour a t  subcritical 
flow speeds should be mentioned although results are not presented here. These are 
dominated by seemingly random flexural effects after the pulse has left the surface. 
The complexity of the wall response is largely due to the repeated reflection of the 
flexural waves at  the surface edges and the following wave interactions. It may be 
important to  take such motions into account as it is these Class B flexural waves, 
when they travel downstream, which could support the existence of TWF. This may 
well be the critical instability when the effects of the boundary layer are taken into 
account. 

3.2. The effects of wall damping 

The effect of surface-energy dissipation has remained, perhaps, the most contentious 
aspect of divergence instability. In  the analysis of a wall of finite length, it can be 
shown that when a single-mode (in retrospect, a reasonable simplification given the 
results presented above) solution is carried out, the only effect of wall damping is to 
reduce the growth rate of the instability leaving its onset flow speed unchanged. In  
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contrast, travelling-wave methods predict that divergence occurs once the flow speed 
for which the wave phase speed is identically zero has been exceeded, and only 
provided that there is damping present. Thus, proponents of the standing-wave 
approach would support the view that divergence is a Class C instability whilst those 
of travelling-wave methods are inclined to regard it as Class A. 

To investigate the effects of wall damping in the present context, it is necessary to 
assign suitable values to the coefficient of damping, d,  in (2.2). A damping factor, q, 
is introduced which is appropriate to standing-wave oscillations of the wall in vacuo. 
This is simply the ratio of the amplitudes at  a single surface point separated in 
time by one period of oscillation. Thus, if the nth mode of a disturbance 
A ,  sin (nRz /a)  exp ( i d  ), where w is the angular frequency of oscillation, is used in 
(2.1) with &p = 0, it is found that 

lnq[ (nun)” ]t d = -- B - +KE (p,h)i .  R (3.5) 

In using this formulation, the test values given to q are 0.75, 0.5 and 0.25 which 
represent a wide range of damping values. 

Although the above-described formulation engenders a clear physical feeling for 
the amounts of damping to be introduced, it does represent a somewhat arbitrary 
approach as regards a true model of the effects of damping for Kramer’s compliant 
coatings. It is therefore worthwhile relating the values inferred above to the data 
available for Kramer’s natural-rubber walls. In fact, little definitive data is available 
for Kramer’s original coatings ; nevertheless, Carpenter & Garrad (1985) have 
collated and discussed such information that there is. The most important point to 
note is that the damping of Kramer’s coatings was viscoelastic and so more properly 
modelled by a loss factor, 7, which may be a complicated function of the wall 
motion’s frequency. Complex elastic modulus and equivalent spring-foundation 
stiffness can be written 

E* = E,(1 -if) ,  Kg = KEr(l -iT’‘) (3.6a, b) 

where the suffix r denotes the real part. If the loss factors for the above two 
components of the wall structure are taken as equal, then the out-of-phase term 
obtained from the use of (3.6a, b )  in the equation of motion may be related to an 
equivalent coefficient of damping, expressed in (3.5), by 

E, h3 
(3.7) 

where it has been taken that 71 = 7’ = 7”. 
Using the present wall data and n = 10, in vmuo results for w give that when q = 

0.75, 0.5 and 0.25, then 7 = 0.092, 0.221 and 0.441 respectively. If the angular 
frequency of vibration at zero flow speed is used then for q = 0.75, 0.5 and 0.25 the 
associated loss factors are 7 = 0.065, 0.157 and 0.313 respectively. It is appreciated 
that because of the absence of hydrodynamic stiffness at zero flow speed, these values 
represent the inferred top limits of 7 for a given q. Carpenter & Garrad deduce that 
the loss factors for the Kramer (1960) walls are less than or equal to 0.1. Thus, the 
proposed values of equivalent damping used here lie within an acceptable range. 

To investigate the effect of damping on a compliant wall undergoing divergence 
instability, a set of runs at 17.5 m/s has been carried out for q = 1.0 (undamped), 
0.75, 0.5 and 0.25. Since it has been shown (see figure 2b) that the critical mode for 
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this wall being used can be approximated by A ,  sin (nm/a)  with n = 10, we have 
imposed this deflection on the compliant wall to serve as an initial perturbation. The 
wall is released at  t = 0 and the disturbance evolution, for the undamped case (q = 
l . O ) ,  is shown in figure 3(a). Deflection histories for the damped cases are not 
presented here because they are almost identical to figure 3 ( a )  - only a t  the highest 
level of damping (q = 0.25) can a slight reduction in the growth rate of the instability 
be perceived. Instead, the energy records of all four cases are presented in figure 3 (b ) .  
Only the values of E,  and W, are plotted since E ,  x 0 for this slowly travelling wave. 
In all cases, the growth of both E,  and W, indicate that divergence instability is 
underway. The single effect of damping is to reduce the growth rate of the instability 
as compared with the result for the undamped wall. This is a clear indication of Class 
C behaviour. The primary mechanism for divergence instability is the reversible 
transfer of energy into the surface by conservative hydrodynamic forces. The 
removal of surface energy serves only to modify slightly the effect of the primary 
cause. Nor is the onset flow speed of divergence changed since precisely at the critical 
flow speed, the wall is in a state of static equilibrium. 

This result runs counter to those of the travelling-wave methods for predicting 
divergence on an infinitely long wall which suggest that divergence cannot occur in 
the absence of wall damping. Landahl (1962) first described how damping 
precipitated divergence instability in the case of an infinitely long surface. The onset 
flow speed of divergence is determined by the value at  which the originally upstream- 
travelling wave reverses to travel downstream. In an undamped system with no 
(surface) end constraints, neutral stability is maintained for flow speeds in excess of 
the critical flow speed because the so-called hydrodynamic damping (part of the 
potential-flow forcing given by (2.13)) is able to modulate the phase speed (and hence 
the relative flow speed) such that the hydrodynamic stiffness continues exactly to 
balance the restorative structural forces. This situation may be thought of as an 
unstable equilibrium which is broken by the introduction of damping. The phase 
speed of the wave is marginally reduced and the increase to the relative flow speed 
produces a hydrodynamic stiffness that is able to overcome the restorative forces and 
so instability ensues. The exact balance, which gives neutral stability, can only exist 
on an infinitely long surface where there is no structural impediment to wave travel. 
However, on any finite surface (in the absence of damping), it is the existence of 
leading and trailing edges which breaks the above balance. Previous authors (e.g. 
Landahl 1962, Dugundji et al. 1963; Duncan et al. 1985; Carpenter & Garrad 1986) 
have noted that any amount of damping, no matter how little, gives rise to 
instability of the slow downstream wave. So it is with leading- and trailing-edge 
effects; no matter how distant they may be from a centrally located disturbance, 
their marginal interference with totally free wave travel ensures that instability sets 
in immediately the originally upstream wave begins to travel downstream. 

Attention has been given to the violent modal-coalescence flutter that both 
standing-wave and travelling-wave methods predict to replace divergence instability 
at  higher flow speeds. From results not presented here, the current method shows 
that this evolves smoothly from divergence as the flow speed is increased. In 
agreement with the predictions of both standing-wave and travelling-wave theories, 
the growth rates of this severe instability are marginally reduced with damping. This 
is clearly Class C behaviour. In the absence of damping, this instability has been 
predicted by travelling-wave theories (e.g. Carpenter & Garrad 1986; Duncan et al. 
1985) to be explosive in its onset, arising from the merging of two neutrally stable 
modes ; only when damping was included did its evolution from divergence become 



0.9 

10-4) 

0.6 

0.3 

0 

-0.3 

-0.6 

Interaction of a compliant wall and inviscid flow 

L " " " " " " " " " " " " " " ' 1  

137 

0 10 ' 20 30 40 50 60 
Surface station, i 

0.0150 

0.0125 
c e 
5 
1 

.z 0.0100 
a 

B 
8 w 

0.00075 

0.0050 
0 0.00008 0.00016 0.000 24 0.00032 

Time (s) 

FIGURE 3. The effect of wall damping when U, = 17.5 m/s. Wall and fluid data are as for figure 
2. (a) The variation of vertical wall deflection with wall-station number for q = 1.0. Surface position 
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(undamped) ; --, q = 0.75; q = 0.50; ----, q = 0.25. Wv; -.-, q = 1.0 (undamped) ; ......, 
q = 0.75; -...-, q = 0.5; --, q = 0.25. 
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FIGURE 4(a ,6) .  For caption see facing page. 

smooth. In the present model its evolution from divergence instability is smooth 
even in the absence of damping. This suggests that the influence of edge effects on 
walls of finite length is somewhat similar to that of damping on infinitely long 
compliant walls. 

Some results pertaining to the behaviour of a damped compliant wall over which 
a point pressure pulse passes are now presented. In the divergence range of flow 
speeds, figures 4(a) and 4 ( b )  respectively chronicle the wall response whilst the 
pressure pulse is still on the surface and a t  later times when the divergence mode has 
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FIGURE 4. Damped-wall response during and after a travelling pressure-pulse excitation when 
U ,  = 17.5 m/s. The damping factor, q, is 0.5 and the wall and fluid data are as for figure 2. (a) The 
variation of vertical wall deflection with wall-station number at early times. Surface position at: 
-, t = 0.001 s ;  --, t = 0.002 s ;  -.-, t = 0.003 s ;  ---, t = 0.004 s .  ( b )  The variation of vertical wall 
deflection with wall-station number at later times. (The pressure pulse left the compliant wall at 
t = 0.0035 s . )  Surface position at: -, t = 0.010 s ;  --, t = 0.01 1 s ;  -.-, t = 0.012 s. (c) The variation 
of wall-energy with time. -, E,; --, E,; --, E,; ---, W,. 

been established. These may be compared with the equivalent undamped responses 
seen in figures 2 (a) and 2 ( b ) .  It is immediately obvious that damping is very effective 
in the removal of the constituent of flexural response to the pressure-pulse whilst not 
impairing the eventual hydroelastic development of the divergence mode. This is 
clearly seen when the energy records, figure 4(c) (damped wall) and figure 2(c) 
(undamped wall) are compared. Disregarding the greater energy absorbed from the 
pressure pulse by the undamped wall, the continuing important contribution to the 
wall energy, after the pulse has left, of E ,  in the case of the undamped wall is 
evidence of the persistence of flexural response. This detracts from the formation 
of a pure critical (divergence) mode which is reflected in the lower growth rates of the 
instability. The damped wall, in contrast, quickly shows an elimination of flexural 
response (giving almost negligible values for E K )  and so adopts the shape of the 
critical mode a t  an earlier time ; the smoother mode then shows higher growth rates. 
It may therefore seem that damping promotes divergence instability so supporting 
the Class A categorization. This is an erroneous inference ; damping serves only to 
expedite the formation of the divergence mode through the removal of flexural 
response. Once the mode is established, the destabilization is caused by reversible 
energy transfers and continues to be more properly described as a Class C 
disturbance. 

How can these results be reconciled to the findings of experimental work ? Gad-el- 
Hak et al. ( 1984) clearly demonstrate divergence instability when their viscoelastic 
wall is exposed to a (turbulent) boundary-layer flow. However, a similar experiment 
but using an almost elastic wall reported in Gad-el-Hak (1986a) ,  shows the wall to 
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be destabilized by a completely different mode. A fast elastic wave provides the 
critical instability; this mode is identified as Class B TWF. McMichael et al. (1980) 
have also recorded TWF of a low-damping tensioned membrane subjected to a 
turbulent boundary-layer flow, having first identified divergence instability and then 
postponed its onset (by increasing the wall tension) to  flow speeds higher than those 
in which the main investigation was concentrated. 

Since there was no evidence of divergence on Gad-el-Hak’s elastic wall, he 
concluded that damping was an essential property for the realization of divergence. 
Carpenter & Garrad (1986) pointed out that for an elastic surface it is TWF that gives 
the critical instability ; the presence of damping shifts (or can remove completely) the 
onset of TWF to higher flow speeds than the onset flow speed of divergence. Thus 
divergence becomes the critical instability. That the damping is not an essential wall 
property for the occurrence of divergence has also been shown in the present work. 
Furthermore, the work of McMichael et al. (1980) provides another ‘zero-damping ’ 
situation in which TWF precedes divergence with increasing flow speed. Never- 
theless, in this case divergence instability was observed a t  higher flow speeds. 
Therefore, one is left wondering why, at higher flow speeds, the TWF of Gad-el-Hak’s 
elastic wall did not give way to the more potent divergence instability. A possible 
answer emerges from the present results when the travelling pressure pulse is used as 
the initial excitation. It has been seen in figures 2 (a ,  6, d ) and 4 (a, b )  that divergence 
only sets in after the pressure pulse has left the trailing edge of the surface. The 
surface is then able to adopt the particular hydroelastic mode that is unstable in 
divergence. The turbulent boundary layer used in Gad-el-Hak’s ‘ zero-damping ’ 
experiments could be imagined to be providing a stream of pressure pulses, the 
flexural response to which prevents the wall from adopting the divergence mode. 
However, when damping is present, as in the viscoelastic experiments, flexural 
response is quickly attenuated and the divergence mode can form. It has been noted 
that in the present work, the effect of damping is to eliminate Class B flexural 
response and promote the formation of the divergence mode. Of course, once 
divergence is underway, damping exercises its orthodox function in reducing the 
growth rate of the instability. 

3.3. Wall response to a single-point impulse 

The initiation of surface motion by a travelling pressure pulse could be regarded as 
predisposing the phase speed of the resulting disturbance to  values associated with 
the phase speed of the pulse. I n  order to avoid any preconditioning of wall response, 
this section allows a disturbance to develop from a point pressure pulse applied only 
at  the start of the response history. I n  this work the wall is represented by a flexible 
plate with no spring foundation ; this type of wall is chosen so as to make comparisons 
with the work of Brazier-Smith & Scott (1984) who used a similar configuration, 
calculating deflection histories by means of transform methods. In particular, 
BrazierSmith & Scott were interested in differentiating between convective and 
absolute instabilities. They found only one true hydroelastic instability that was 
absolute and was subsequently aligned by Carpenter & Garrad (1986), using 
travelling-wave methods, with the modal-coalescence-flutter solution of the 
dispersion equation. Of greater interest, perhaps, was that, at flow speeds below the 
onset of flutter, there existed an ‘upstream-incoming’ wave that they described as 
a convective instability. This was envisioned as a wave originating from a location 
upstream of the initial point of excitation, only growing as it travelled downstream. 
A similar analysis carried out by Atkins (1982) showed that damping caused this 
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FIQURE 5. The variation of vertical wall deflection with wall-station number after a single-point 
impulse at t = 0 s applied at the wall midpoint (i = 60). Surface position at: -, t = 0.00020 s ;  --, 
t = 0.00024 s;  -.-, t = 0.00028 s ;  ---, t = 0.00032 s. (a) Flow speed, V = 0. ( b )  Flow speed, V = 
0.0295. Wall data: B = 4904 Nm, K ,  = 0, a = 2.0 m, h = 0.01 m, p, = 2600 kg/m3 and d = 0. The 
fluid density is 1000 kg/ma. 

wave to grow. Carpenter & Garrad have identified this wave as being associated with 
the divergence wave found using travelling-wave methods and showed that whilst 
such a wave evidences a positive (downstream) phase speed, it has zero group 
velocity and is better described as an absolute instability. The results presented here 
should serve to illustrate the character of such a wave. 

In the following, a non-dimensional flow speed, V ,  is used. It is defined by 

The length to thickness ratio of the undamped flexible plate is 200 and the fluid 
density is taken as 1000 kg/m3. Surface motion is initiated by an instantaneous 
pressure pulse applied at the mid-point of the surface. Figure 5 ( a )  shows surface 
deflections when V = 0 for a sequence of time steps shortly after the starting time. 
At zero flow speed the flexural waves propagate symmetrically outwards from the 
point of initial excitation. It is noted that the secondary, labelled S, and tertiary, 
labelled T, (half-wavelength) disturbances have higher wavenumbers and so greater 
phase speeds. When V = 0.0295, the results of figure 5 ( b )  are obtained : the primary 
disturbance, labelled P, evinces growth as it travels downstream. Of more interest is 
that the upstream secondary disturbance (S) is also travelling downstream and 
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FIGURE 6. The variation of vertical wall deflection with wall-station number after a single-point 
impulse at t = 0 s applied at the wall mid-point (i = 60) when the flow speed, V ,  is 0.0443. (a) 
Early times, surface position at: -, t = 0.00004 s; --, t = 0.00008 s;  -.-, t = 0.00012 s;  ---, 
t = 0.00016 s .  (b) Later times, surface position at :  -, t = 0.0002 s ;  --, t = 0.00024 s ;  -.-, 
t = 0.00028 s;  ---, t = 0.00032 s. Wall and fluid data are as for figure 5. 

showing growth before reaching the original point of excitation. This is identified as 
the ' upstream-incoming ' wave. Flexural propagation, modified by hydrodynamic 
forces, initially spreads energy to locations upstream of the initial point of 
excitation ; thereafter, hydroelastic effects take over and instability sets in as soon as 
that part of the disturbance wavetrain moves downstream. Again, it is emphasized 
that this occurs in the absence of damping, thereby reinforcing the combined 
description of the divergence as an absolute and a Class C instability. The tertiary 
upstream disturbance (T) continues to propagate upstream a t  the times shown, its 
shorter wavelength shows it to be a subcrit,ical (flexural) response a t  this flow speed. 

At a higher flow speed, V = 0.0443, figures 6(a )  and 6 ( b )  follows the wall response 
for a continuous sequence of time steps after the initial excitation. At the later times, 
plotted in figure 6 ( b ) ,  the primary disturbance (P) is showing the more severe modal- 
coalescence flutter found by Brazier-Smith & Scott, whilst divergence waves are seen 
in the upstream secondary (S) and tertiary (T) disturbances. Even further upstream, 
flexural waves are seen to be progressing in the upstream direction. With sufficient 
time, these too will become hydroelastically unstable. These two figures serve as a 
summary of the manner in which disturbances (subjected to a sufficiently high flow 
speed) may first evolve into divergence instability which can then, in turn, become 
modal-coalescence flutter. Given that modal-coalescence flutter is undeniably a Class 
C instability this sequence of events adds further support to the characterization of 



Interaction of a compliant wall and inviscid $ow 143 

divergence as a Class C wave. Moreover, these figures illustrate how divergence 
instability is manifest as a downstream travelling wave and yet can spread to wall 
locations upstream of the point of initial excitation. The latter effect is typical of an 
absolute instability. The experiments of Gad-el-Hak et al. (1984) show divergence at  
all locations of the compliant panel. So too in the present work, with sufficient 
passage of time, instability will come to occupy the entire compliant wall regardless 
of the location of the initial excitation. 

4. Conclusions 
A new and versatile method for predicting the hydroelastic response of a passive 

compliant wall has been developed, tested and then used to conduct an investigation 
of the two-dimensional, strictly inviscid, instabilities of the wall/flow system. The 
pre-existence of certain forms of disturbance within the system, commonly assumed 
in most earlier means of analysis, is not an assumption made in this new method; 
instead, disturbance forms are allowed to develop subject only to the physics of the 
system. This work has therefore been able to address the question of causality. 

Divergence instability has been shown to exist as a slow downstream-travelling 
wave. The onset flow speed of this instability is independent of the means of initial 
excitation ; its value may be regarded as a pessimistic prediction because a purely 
potential flow has been used. For ideal modes, the modification that a boundary layer 
would impose can be approximately modelled by the application of a factor, K ,  eiep, 
to the potential-flow result for unsteady pressure. K ,  is an overall scaling factor 
whilst 0 ,  is the phase-shift angle due to the boundary layer. Since the form of 
divergence, in the linear regime studied here, has been shown to be nearly sinusoidal, 
the scaling factors suggested by Kendall (1970) (turbulent boundary layers) and 
Balasubramanian & Orszag (1983) (laminar boundary layers) could be applied to 
determine more realistic instability-onset flow speeds. The irreversible energy 
transfers arising from the pressure phase shift, O,, would leave the onset flow speed 
of divergence unchanged since the wave is static exactly at  onset. At higher flow 
speeds, the pressure phase shift could alter the growth rate of the instability; 
however, this effect would be secondary since the energy transfers associated with 
the driving conservative fluid forces always outweigh the irreversible energy 
transfers for divergence. 

At appropriate flow speeds, it has been shown that divergence occurs only after the 
surface has assumed the shape of a particular critical mode. The wavelength of this 
mode is determined by the combination of structural and hydrodynamic forces. It is 
noted that previous methods of analysis are able to predict correctly the divergence- 
onset flow speed and the critical wavelength (when the ratio of wavelength to surface 
length is sufficiently small) but yield misleading predictions apropos the nature of the 
instability. The present simulations of the form of divergence are generally in 
reasonable agreement with experimental observation. Complete agreement with 
measured divergence modes is unattainable using the present linear model because 
experimental results have most often recorded the nonlinear phase of divergence in 
which structural nonlinearities have overcome hydrodynamic nonlinearities to halt 
the disturbance growth. 

In the travelling-wave analyses of divergence over infinitely long compliant 
surfaces, wall damping, no matter how light, plays an essential destabilizing role. It 
slows the surface wave slightly, thereby allowing an energy transfer from the flow to 
the wall. In contrast, for surfaces of finite length, no matter how long, it is the 
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existence of edge conditions that facilitate the necessary energy transfer. Thus for 
finite surfaces, the role of damping seen in the analyses of divergence over infinitely 
long surfaces, is essentially played by the edge conditions. This allows damping to 
revert to its more orthodox attenuating role for surface disturbances. Accordingly, 
for finite compliant walls, damping reduces the growth rate of divergence but leaves 
its onset flow speed unchanged. Furthermore, the edge conditions also ensure a 
smooth evolution of modal-coalescence flutter from the divergence instability as the 
flow speed is increased. After an initiating perturbation, but prior to hydroelastic 
instability, damping can facilitate the establishment of the necessary instability 
mode; thereafter, it subtracts from the rate of energy transfer to the wall by the 
conservative hydrodynamic forces. 

In the divergence regime of flows speeds, an increase in the flow speed serves to 
increase the phase speed of the divergence wave until it  evolves into modal- 
coalescence flutter. The onset flow speed for the latter instability is not clearly 
defined. Again, damping can be shown to decrease the growth rate of this Class C 
instability. Further investigation of this flutter has not been pursued since it is 
known to be strongly three-dimensional. 

The response of divergence to damping, the fact that it can spread to wall regions 
upstream of the location of a point of initial excitation and its relationship to modal- 
coalescence flutters strongly suggest that divergence is an absolute instability and is 
also a Class C disturbance. 

Although the results presented in this paper have concentrated upon the 
interaction of a fluid flow with a Kramer-type wall, it is remarked that the general 
method - that of coupling a boundary-integral flow solution with a solution for wall 
mechanics - is applicable to other types of finite walls provided that suitable 
solutions for the wall behaviour are available. 

The work described in this paper has been undertaken as part of a research 
programme at the University of Warwick supported by the Ministry of Defence 
(Procurement Executive). Most of the work was carried out while A.D.L. was in 
receipt of an SERC CASE research studentship at  the University of Exeter 
sponsored by the Ministry of Defence. The paper has been prepared during a period 
when he was supported as a Research Fellow by the MOD. 
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